Lecture

Generating Arrays (arange, linspace, zeros, ones)

NumPy offers built-in functions that let you create arrays quickly without typing values manually.

These functions are especially useful for generating test data or initializing arrays for computations.


np.arange(start, stop, step)

Generates evenly spaced values from start to stop (excluding stop).

np.arange(start, stop, step)
np.arange(0, 10, 2) # [0 2 4 6 8]

np.linspace(start, stop, num)

Generates a specific number of evenly spaced values including the stop value.

np.linspace(start, stop, num)
np.linspace(0, 1, 5) # [0. 0.25 0.5 0.75 1.0]

np.zeros(shape) and np.ones(shape)

Create arrays filled with zeros or ones. Pass a shape like (3,) or (2, 3).

np.zeros(shape)
np.zeros((2, 2)) # [[0. 0.] # [0. 0.]]
np.ones(shape)
np.ones((2, 3)) # [[1. 1. 1.] # [1. 1. 1.]]

Summary

  • arange: values spaced by step (like range())
  • linspace: values spaced by number of points
  • zeros / ones: fill arrays with fixed values
Quiz
0 / 1

Using NumPy's array creation functions

The `np.linspace` function is used to create spaced values, including the final value.
randomly
evenly
randomly with a step
unevenly

Lecture

AI Tutor

Design

Upload

Notes

Favorites

Help